Wireless power and datatelemetry based on amplitude-shift keying (ASK) modulation over dual inductive links has been widely adopted in biomedical implants. Due to the mutual inductance between the power and data links, the large power-carrier-interference (PCI) will inevitably cause low signal-to-interference ratio (SIR) of the received signal, thereby increasing the bit-error-rate (BER) of the ASK demodulation. In this paper, an innovative high energy-efficient ASK demodulator robust to PCI has been proposed. Thanks to the proposed sampling-and-subtraction (SAS) architecture, the demodulator is capable of withstanding PCI with an amplitude up to 2.5 times as the data carrier without the need for any high-order filters. The prototype has been implemented with 180 nm standard CMOS process, occupying a core area of 0.51 mm 2. The experimental results show that with 1 Mbps data rate and 13.56 MHz carrier frequency, the typical BER is less than 1.3×10 -3, while the energy efficiency is 280 pJ/bit, showing 7.5× improvement compared to the prior works. The energy-efficient robustness to PCI demonstrates the potential of the technique to be applied to retina prostheses as well as various kinds of ultra-low-power implantable biomedical devices.
Read full abstract