Background Successful integration of vestibular, visual and somatosensory information results in motor responses to maintain upright stance. When one or more of these senses have reduced efficacy, balance can be affected. When proprioception is reduced, people show greater postural sway amplitudes, resulting in increased centre of pressure excursions as seen in diabetic peripheral neuropathy. This is the primary cause of postural instability in the diabetic population. To compensate for this, re-weighting between sensory modalities can occur. Reduced peripheral sensation, for example, can result in an increased gain of the postural response to galvanic vestibular stimulation. Particularly in people with distal sensory loss, balance may depend on the ability to effectively reweight remaining information from within the somatosensory system.