Abstract

The influence of breath holding and voluntary hyperventilation on the classic stabilometric parameters and the frequency characteristic of stabilographic signal were studied. We measured the stabilometric parameters on the force platform ("Ritm", Russia) on the healthy volunteers (n = 107) during quiet breath, voluntary hyperventilation (20 seconds) and maximal inspiratory breath holding (20 seconds). Respiratory frequency, respiratory amplitude and ventilation were estimated with strain gauge. We found that antero-posterior and medio-lateral sway amplitude and velocity as well as sway surface at breath-holding and at quiet breathing were the same, so breath holding didn't influence the postural stability. However the spectral parameters shifted to the high frequency range due to alteration of the respiratory muscles contractions during breath-holding versus quiet breath. Voluntary hyperventilation caused significant increase of all stabilographic indices that implied an impairment of postural stability, which was due to the increase of respiration frequency and amplitude. We also found that the spectral indices moved toward the high-frequency range with more pronounced degree of this shift versus breath holding. Besides, amplitudes of spectral peaks also increased. Perhaps such change of spectral indices was due to distortion of proprioceptive information because of increased excitability of nerve fibers during hyperventilation. Maximal inspiration breath holding causes strain of the postural control mechanisms that is reflected as elevation of postural sway frequency with no postural stability changes. Hyperventilation leads to the most prominent strain of balance function and decrease of steadiness that is manifested as increase of center of pressure oscillations amplitude and frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.