The incorporation of deep level defects in n-type GaN grown by ammonia-based molecular beam epitaxy (MBE) is studied via systematic adjustment of the NH3/Ga flux ratio. Deep level optical and transient spectroscopies, which together enable deep level detection throughout the GaN bandgap, reveal defect states whose individual concentrations vary with the NH3/Ga flux ratio. A general trend of lower concentration for deep levels at EC−3.28, EC−1.28, EC−0.62, and EC−0.25 eV with higher NH3/Ga flux ratio was observed, with the strongest reduction at the EC−0.25 eV level, consistent with expectations for a VN-related defect. The known CN impurity state at EC−3.28 eV and suspected CI-related state at EC−1.28 eV also showed a moderate decrease in concentration at the higher NH3/Ga flux ratio. In contrast, the VGa-related defect at EC−2.62 eV was insensitive to the NH3/Ga flux ratio over the range studied here. Taken together, ammonia-MBE GaN has deep level defects with different sensitivities in flux ratios suggestive of independent physical sources. However, the total trap concentrations were significantly reduced for higher NH3/Ga flux ratios in n-type GaN grown by ammonia-MBE under the range of growth conditions used in this study, suggesting that higher NH3/Ga flux ratios will generate higher electronic quality GaN material when using ammonia-based MBE for device applications.
Read full abstract