Curing behavior of amino-functionalized carbon nanotubes (ACNT) used as reinforcing agent in epoxy resin has been examined by thermal analysis. Experiments performed as per supplier’s curing conditions showed that modification of the curing schedule influences the thermo-mechanical properties of the nanocomposites. Specifically, the glass transition temperature (Tg) of ACNT-reinforced composites increased likely due to the immobility of polymer molecules, held strongly by amino carbon nanotubes. Further, a set of composites were prepared by implementing the experimentally determined optimal curing schedule to examine its effect on the mechanical properties of different GFRP compositions, while focusing primarily on reinforced ACNT and pristine nanotube (PCNT) matrix with silane-treated glass fibers. From the silane treatment of glass fibers in ACNT matrix composition it has been observed that amino silane is much better amongst all the mechanical (tensile and flexural) properties studied. This is because of strong interface between amino silane-treated glass fibers and modified epoxy resin containing uniformly dispersed amino-CNTs. On the other hand, PCNT GFRP composites with epoxy silanes demonstrated enhanced results for the mechanical properties under investigation which may be attributed to the presence of strong covalent bonding between epoxy silane of glass fiber and epoxy–amine matrix.