Biobased materials are expanding dramatically in various industrial applications due to their unique intrinsic properties. In this study, various chemical functionalization procedures were used to synthesize guar gum, a naturally occurring polysaccharide-based polyurea, and its iodine complexes. Firstly, guar gum was subjected to tosylation reaction using p-toluene sulphonyl chloride to introduce tosyl moieties in the polymer chain with the degree of substitution (DS) ranging between 0.16 and 1.54. Sample having the highest degree of tosyl moiety was further reacted with tris(2-aminoethyl) amine to produce 6-deoxy-6-tris(2-aminoethyl) amine derivative via nucleophilic substitution reaction to impart amino functional groups. The degree of substitution in 6-deoxy-6-tris(2-aminoethyl) amine derivative was found to be 0.59. 6-deoxy-6-tris(2-aminoethyl) amine derivative was reacted with different diisocyanates (Toluene-2,4-diisocyanate (TDI), 1,6-diisocyanatohexane (HMDI)) to produce guar gum based polyurea. Iodine complexes of the resulting polyurea were prepared by reacting with different iodinating agents. Different chemical reactions, formation of polyurea and its iodine complexes were thoroughly analyzed by different analytical techniques such as FT-IR, NMR, elemental analysis, XRD, UV–Vis spectroscopy, and a reaction scheme has been proposed. Morphological and rheological characteristics were analyzed by SEM and viscosity measurement. Thermal analysis was carried out by TGA and DSC studies. Finally, by examining the complex's UV–Vis spectra, the iodine release characteristics from polyurea‑iodine complexes were investigated.