Introducing more ionic conductive groups in polymer-based anion exchange membranes (AEMs) can improve the ion exchange capacity and further overcome the disadvantage of low ion conductivity for AEMs. However, the excessive swelling of AEMs caused by exorbitant IEC value may reduce the dimensional stability of membranes. So it is extremely important to modify the structures of AEMs. Herein, we proposed a facile strategy to construct reduced graphene oxide (rGO) stable crosslinked polysulfone-based AEMs with improved properties. rGO was non-covalently modified with pyrene-containing tertiary amine small molecule and polymer via π-π interactions. The as-prepared functionalized rGO (TrGO and PrGO) as both cross-linkers and fillers to fabricate quaternized polysulfone (QPSU)-based AEMs (CQPSU-X-TrGO and CQPSU-X-PrGO) for the first time. The cross-linked membranes can tighten the internal packing structure, and enhance the alkaline resistance, ion conductivity and oxidative stability of AEMs. Furthermore, the hydrophilicity and flexibility of the CQPSU-X-PrGO membranes were significantly improved as compared with that of CQPSU-X-TrGO membranes. PrGO-crosslinked membranes (CQPSU-2%-PrGO, σOH− = 117.7 mS/cm) displayed higher ionic conductivities at 80 °C than TrGO-crosslinked membranes (CQPSU-1%-TrGO, σOH− = 87.2 mS/cm). The remarkable nanophase separation can be observed in the CQPSU-X-PrGO membranes by TEM. This feasible strategy can be efficiently used to prepare new type of crosslinked organic-inorganic nanohybrid AEMs with excellent chemical stability and high ionic conductivity.
Read full abstract