The epithelial sodium channel (ENaC) is a key regulator of airway mucosal hydration and mucus clearance. Negative regulation of airway ENaC function is predicted to be of clinical benefit in the cystic fibrosis lung. The aim of this study was to develop a small animal model to enable the direct assessment of airway ENaC function in vivo. Tracheal potential difference (TPD) was utilized as a measure of airway epithelial ion transport in the guinea-pig. ENaC activity in the trachea was established with a dose-response assessment to a panel of well-characterized direct and indirect pharmacological modulators of ENaC function, delivered by intra-tracheal (i.t.) instillation. The TPD in anaesthetized guinea-pigs was attenuated by the direct ENaC blockers: amiloride, benzamil and CF552 with ED(50) values of 16, 14 and 0.2 microg kg(-1) (i.t.), respectively. 5-(N-Ethyl-N-isopropyl) amiloride, a structurally related compound but devoid of activity on ENaC, was without effect on the TPD. Intra-tracheal dosing of the Kunitz-type serine protease inhibitors aprotinin and placental bikunin, which have previously been demonstrated to inhibit proteolytic activation of ENaC, likewise potently attenuated TPD in guinea-pigs, whereas alpha(1)-antitrypsin and soya bean trypsin inhibitor were without effect. The pharmacological sensitivity of the TPD to amiloride analogues and also to serine protease inhibitors are both consistent with that of ENaC activity in the guinea-pig trachea. The guinea-pig TPD therefore represents a suitable in vivo model of human airway epithelial ion transport.
Read full abstract