Abstract

The signaling mechanism induced by cadmium (Cd) and zinc (Zn) in gill cells of Mytilus galloprovincialis was investigated. Both metals cause an increase in O 2 − production, with Cd to be more potent (216 ± 15%) than Zn (150 ± 9.5%), in relation to control value (100%). The metals effect was reversed after incubation with the amiloride analogue, EIPA, a selective Na +/H + exchanger (NHE) inhibitor as well as in the presence of calphostin C, a protein kinase C (PKC) inhibitor. The heavy metals effect on O 2 − production was mediated via the interaction of metal ions with α 1- and β-adrenergic receptors, as shown after incubation with their respective agonists and antagonists. In addition, both metals caused an increase in intracellular pH (pHi) of gill cells. EIPA together with either metal significantly reduced the effect of each metal treatment on pHi. Incubation of gill cells with the oxidants rotenone, antimycin A and pyruvate caused a significant increase in pHi (ΔpHi 0.830, 0.272 and 0.610, respectively), while in the presence of the anti-oxidant N-acetyl cysteine (NAC) a decrease in pHi (ΔpHi −0.090) was measured, indicating that change in reactive oxygen species (ROS) production by heavy metals affects NHE activity. When rosiglitazone was incubated together with either heavy metal a decrease in O 2 − production was observed. Our results show a key role of NHE in the signal transduction pathway induced by Zn and Cd in gill cells, with the involvement of ROS, PKC, adrenergic and PPAR-γ receptors. In addition, differences between the two metals concerning NHE activation, O 2 − production and interaction with adrenergic receptors were observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.