The thyroid nodule is one of the most common endocrine system diseases. Risk classification models based on ultrasonic features have been created by multiple professional societies, including the American College of Radiology (ACR), which published the Thyroid Imaging Reporting and Data System (TI-RADS) in 2017. The effect of the size in the diagnostic value of ultrasound remains not well defined. The purposes of our study aims to explore diagnostic value of the ACR TI-RADS on different-sized thyroid nodules. A total of 1183 thyroid nodules were selected from 952 patients with thyroid nodules confirmed by surgical pathology from January 2021 to October 2022. Based on the maximum diameters of the nodules, they were stratified into groups A ( ≤ 10 mm), B ( > 10 mm, < 20 mm) and C ( ≥ 20 mm). The ultrasonic features of the thyroid nodules in each group were evaluated and scored based on ACR TI-RADS, and the receiver operating characteristic curve (ROC) was plotted to determine the optimal cut-off value for the ACR TI-RADS scores and categories in each group. Finally, the diagnostic efficacy of ACR TI-RADS on different-sized thyroid nodules was analyzed. Among the 1183 thyroid nodules, 340 were benign, 10 were low-risk and 833 were malignant. For the convenience of statistical analysis, low-risk thyroid nodules were classified as malignant in this study. The ACR TI-RADS scores and categorical levels of malignant thyroid nodules in each group were higher than those of benign ones (p < 0.05). The areas under the ROCs (AUCs) plotted based on scores were 0.741, 0.907, and 0.904 respectively in the three groups, and the corresponding optimal cut-off values were > 6 points, > 5 points and > 4 points respectively. While the AUCs of the ACR TI-RADS categories were 0.668, 0.855, and 0.887 respectively in each group, with the optimal cut-off values were all > TR4. Besides, for thyroid nodules of larger sizes, ACR TI-RADS exhibited weaker sensitivity with lower positive prediction value (PPV), but the specificity and negative prediction value (NPV) were both higher, presenting with statistically significant differences (p < 0.05). For thyroid nodules of different sizes, the diagnostic efficacy of ACR TI-RADS varies as well. The system shows better diagnostic efficacy on thyroid nodules of > 10 mm than on those ≤ 10 mm. Considering the favorable prognosis of thyroid microcarcinoma and the low diagnostic efficacy of ACR TI-RADS on it, the scoring and classification of thyroid micro-nodules can be left out in appropriate cases, so as to avoid the over-diagnosis and over-treatment of thyroid microcarcinoma to a certain extent.
Read full abstract