SUMMARY Large-scale ocean-bottom node (OBN) arrays of 1000s of multicomponent instruments deployed over 1000s of square kilometres have been used successfully for active-source seismic exploration activities including full waveform inversion (FWI) at exploration frequencies above about 2.0 Hz. The analysis of concurrently recorded lower-frequency ambient wavefield data, though, is only just beginning. A key long-term objective of such ambient wavefield analyses is to exploit the sensitivity of sub-2.0 Hz energy to build long-wavelength initial elastic models, thus facilitating FWI applications. However, doing so requires a more detailed understanding of ambient wavefield information recorded on the seafloor, the types, frequency structure and effective source distribution of recorded surface-wave modes, the near-seafloor elastic model structure, and the sensitivity of recorded wave modes to subsurface model structure. To this end, we present a wavefield analysis of low- and ultra-low-frequency ambient data (defined as <1.0 and <0.1 Hz, respectively) acquired on 2712 OBN stations in the Amendment Phase 1 survey covering 2750 km2 of the Gulf of Mexico. After applying ambient data conditioning prior to cross-correlation and seismic cross-coherence interferometry workflows, we demonstrate that the resulting virtual shot gather (VSG) volumes contain evidence for surface-wave and guided P-wave mode propagation between the 0.01 and 1.0 Hz that remains coherent to distances of at least 80 km. Evidence for surface-wave scattering from near-surface salt-body structure between 0.35 and 0.85 Hz is also present in a wide spatial distribution of VSG data. Finally, the interferometric VSG volumes clearly show waveform repetition at 20 s intervals in sub-0.3 Hz surface-wave arrivals, a periodicity consistent with the mean active-source shot interval. This suggests that the dominant contribution of surface-wave energy acquired in this VSG frequency band is likely predominantly related to air-gun excitation rather than by naturally occurring energy sources. Overall, these observations may have important consequences for the early stages of initial model building for elastic FWI analysis.
Read full abstract