Abstract

SUMMARY Ambient noise tomography on the basis of distributed acoustic sensing (DAS) deployed on existing telecommunication networks provides an opportunity to image the urban subsurface at regional scales and high-resolution. This capability has important implications in the assessment of the urban subsurface’s potential for sustainable and safe utilization, such as geothermal development. However, extracting coherent seismic signals from the DAS ambient wavefield in urban environments at low cost remains a challenge. One obstacle is the presence of complex sources of noise in urban environments, which may not be homogeneously distributed. Consequently, long recordings are required for the calculation of high-quality virtual shot gathers, which necessitates significant time and computational cost. In this paper, we present the analysis of 15 d of DAS data recorded on a pre-existing fibre optic cable (dark fibres), running along an 11-km-long major road in urban Berlin (Germany), hosting heavy traffic including vehicles and trains. To retrieve virtual shot gathers, we apply interferometric analysis based on the cross-correlation approach where we exclude low-quality virtual shot gathers to increase the signal-to-noise ratio of the stacked gathers. Moreover, we modify the conventional ambient noise interferometry workflow by incorporating a coherence-based enhancement approach designed for wavefield data recorded with large-N arrays. We then conduct multichannel analysis of surface waves to retrieve 1-D velocity models for two exemplary fibre subsegments, and compare the results of the conventional and modified workflows. The resulting 1-D velocity models correspond well with available lithology information. The modified workflow yields improved dispersion spectra, particularly in the low-frequency band (<1 Hz) of the signal. This leads to an increased investigation depth along with lower uncertainties in the inversion result. Additionally, these improved results were achieved using significantly less data than required using conventional approaches, thus opening the opportunity for shortening required acquisition times and accordingly lowering costs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.