What is the central question of this study? We modelled the alveolar pathway during breath holding on the hypothesis that it follows a hypoventilation loop on the O2 -CO2 diagram. What is the main finding and its importance? Validation of the model was possible within the range of alveolar gas compositions compatible with consciousness. Within this range, the experimental data were compatible with the proposed model. The model and its characteristics might allow predictions of alveolar gas composition whenever the alveolar ventilation goes to zero; for example, static and dynamic breath holding at the surface or during ventilation/intubation failure in anaesthesia. According to the hypothesis that alveolar partial pressures of O2 and CO2 during breath holding (BH) should vary following a hypoventilation loop, we modelled the alveolar gas pathways during BH on the O2 -CO2 diagram and tested it experimentally during ambient air and pure oxygen breathing. In air, the model was constructed using the inspired and alveolar partial pressures of O2 ( and , respectively) and CO2 ( and , respectively) and the steady-state values of the pre-BH respiratory exchange ratio (RER). In pure oxygen, the model respected the constraint of . To test this, 12 subjects performed several BHs of increasing duration and one maximal BH at rest and during exercise (30W cycling supine), while breathing air or pure oxygen. We measured gas flows, and before and at the end of all BHs. Measured data were fitted through the model. In air, =150±1mmHg and =0.3±0.0mmHg, both at rest and at 30W. Before BH, steady-state RER was 0.83±0.16 at rest and 0.77±0.14 at 30W; =107±7mmHg at rest and 102±8mmHg at 30W; and =36±4mmHg at rest and 38±3mmHg at 30W. By model fitting, we computed the RER during the early phase of BH: 0.10 [95% confidence interval (95% CI) =0.08-0.12] at rest and 0.13 (95% CI=0.11-0.15) at 30W. In oxygen, model fitting provided : 692 (95% CI=688-696) mmHg at rest and 693 (95% CI=689-698) mmHg at 30W. The experimental data are compatible with the proposed model, within its physiological range.
Read full abstract