Composting is a good strategy for management of livestock manure. However, it leads to large ammonia emissions and has a potential phosphorus runoff due to high content of soluble phosphorus. The objective of this study was to evaluate the efficiency of alum on reducing ammonia emissions and stabilizing phosphorus during composting of pig manure. For this study, alum was applied at rates of 0 (No-Alum), 1.0 (Alum-L), and 3.0 (Alum-H) g Al pig manure and sawdust mixture (fresh matter basis). The thermophilic stage was quickly achieved in Alum-L and No-alum treatment, but it was delayed to 5 days in Alum-H treatment. The thermophilic stage was maintained for 2 weeks in all treatment. The pH of compost treated with alum remained below 8.0 for the 35 d but it was above 8.0 in No-Alum treatment. For the first 15 days of composting process, 93, 87, and 58% of total ammonia emissions were occurred in No-Alum-L and Alum-H, respectively. The Alum-H and Alum-L treatments reduced volatilization by 31 and 78% compared with No-Alum treatment. Alum treatments shifted manure P form and extractable P into NaOH extractable P which is very stable under acid and alkaline condition. Therefore, alum is a good chemical amendment for reducing ammonia emission during composting and potential losses of P following compost applications.
Read full abstract