The effects upon cerebral glucose utilisation of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801, a non-competitive N-methyl- D-aspartate (NMDA, receptor antagonist) and 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, a competitive NMDA receptor antagonist) were examined in conscious, lightly restrained rats. Cerebral glucose utilisation was assessed quantitatively in 74 brain regions with [ 14C]2-deoxyglucose autoradiography. The intravenous (i.v.) administration of MK-801 (0.05–5 mg/kg) induced heterogeneous patterns of altered cerebral glucose utilisation with statistically significant increased being observed in 21 brain areas and statistically significant decreases in 8 brain regions. Pronounced dose-related increases in glucose use were observed after MK-801 in the subicular complex, hippocampus molecular layer, dentate gyrus, limbic system (posterior cingulate cortex; mamillary body; anteroventral thalamic nucleus), olfactory areas and substantia nigra (pars reticulata). Glucose use in the neocortex and inferior colliculus was particularly sensitive to reduction by MK-801 administration. The pattern of altered glucose use after administration of CPP (3–30 mg/kg, i.v.) differed markedly from that observed after MK-801 treatment. Statistically significant increases in glucose use after CPP were noted in 11 brain areas and statistically significant decreases in 5 of the regions examined. Regions in which increases were noted after CPP included hippocampus molecular layer, olfactory areas, cochlear nucleus, vestibular nucleus, cerebellar nucleus, superior olives and substantia nigra (pars reticulata). These data indicate that widespread, anatomically organised alterations in cerebral function are associated with the administration of NMDA receptor antagonists despite the minor role normally ascribed to these receptors in conventional fast synaptic transmission. The distinct patterns of response to competitive and non-competitive antagonists may be a reflection of the differential responses of the two modes of receptor blockade to increased glutaminergic transmission.
Read full abstract