Forest dwelling browsing mammals, notably feral goats and deer, have been introduced to New Zealand over the past 220 years; prior to this such mammals were absent from New Zealand. The New Zealand forested landscape, therefore, presents an almost unique opportunity to determine the impacts of introduction of an entire functional group of alien animals to a habitat from which that group was previously absent. We sampled 30 long-term fenced exclosure plots in indigenous forests throughout New Zealand to evaluate community- and ecosystem-level impacts of introduced browsing mammals, emphasizing the decomposer subsystem. Browsing mammals often significantly altered plant community composition, reducing palatable broad-leaved species and promoting other less palatable types. Vegetation density in the browse layer was also usually reduced. Although there were some small but statistically significant effects of browsing on some measures of soil quality across the 30 locations, there were no consistent effects on components of the soil microfood web (comprising microflora and nematodes, and spanning three consumer trophic levels); while there were clear multitrophic effects of browsing on this food web for several locations, comparable numbers of locations showed stimulation and inhibition of biomasses or populations of food web components. In contrast, all microarthropod and macrofaunal groups were consistently adversely affected by browsing, irrespective of trophic position. Across the 30 locations, the magnitude of response of the dominant soil biotic groups to browsing mammals (and hence their resistance to browsers) was not correlated with the magnitude of vegetation response to browsing but was often strongly related to a range of other variables, including macroclimatic, soil nutrient, and tree stand properties. There were often strong significant effects of browsing mammals on species composition of the plant community, species composition of leaf litter in the litter layer, and composition of various litter-dwelling faunal groups. Across the 30 locations, the magnitude of browsing mammal effects on faunal community composition was often correlated with browser effects on litter layer leaf species composition but never with browser effects on plant community composition. Browsing mammals usually reduced browse layer plant diversity and often also altered habitat diversity in the litter layer and diversity of various soil faunal groups. Across the 30 locations, the magnitude of browser effects on diversity of only one faunal group, humus-dwelling nematodes, was correlated with browser effects on plant diversity. However, browser effects on diversity of diplopods and gastropods were correlated with browser effects on habitat diversity of the litter layer. Reasons for the lack of unidirectional relationships across locations between effects of browsers on vegetation community attributes and on soil invertebrate community attributes are discussed. Browsing mammals generally did not have strong effects on C mineralization but did significantly influence soil C and N storage on an areal basis for several locations. However the direction of these effects was idiosyncratic and presumably reflects different mechanisms by which browsers affect soil processes. While our study did not support hypotheses predicting consistent negative effects of browsing mammals on the decomposer subsystem through promotion of plant species with poorer litter quality, our results still show that the introduction of these mammals to New Zealand has caused far-ranging effects at both the community and ecosystem levels of resolution, with particularly adverse effects for indigenous plant communities and populations of most groups of litter-dwelling mesofauna and macrofauna.