ObjectiveIdiopathic pulmonary fibrosis (IPF) is a progressive and irreversible interstitial lung disease with a poor prognosis. Alpinetin (ALP), derived from Alpinia katsumadai Hayata, has shown potential as a therapeutic measure of various diseases. However, the utilization of ALP in managing pulmonary fibrosis and its underlying mechanisms are still not fully understood. MethodsA well-established mouse model of pulmonary fibrosis induced by bleomycin (BLM) was used in this study. The antifibrotic effects of ALP on histopathologic manifestations and expression levels of fibrotic markers were examined. Subsequently, the impact of ALP on fibroblast differentiation, proliferation, apoptosis, and associated signaling pathways was investigated to elucidate the underlying mechanisms. ResultsIn the present study, we observed that ALP effectively mitigated BLM-induced pulmonary fibrosis in mice, as evidenced by histopathological manifestations and the expression levels of fibrotic markers. Furthermore, the in vitro experiments demonstrated that ALP treatment attenuated the ability of fibroblasts to differentiate into myofibroblasts. Mechanically, our findings provided evidence that ALP suppressed fibroblast-to-myofibroblast differentiation by repressing TGF-β/ALK5/Smad signaling pathway. ALP was found to possess the capability of inhibiting fibroblast proliferation and promoting apoptosis of fibroblasts induced by TGF-β. ConclusionIn general, ALP may exert therapeutic effects on pulmonary fibrosis by modulating the differentiation, proliferation, and apoptosis of fibroblasts. Although its safety has been demonstrated in mice, further studies are required to investigate the efficacy of ALP in treatment of patients with IPF.