Abstract
The binding interaction of Alpinetin (APT) with bovine serum albumin (BSA) was studied by fluorescence, UV–visible and synchronous fluorescence spectroscopy (SFS) under simulated physiological conditions. The measured complex spectra were resolved by multivariate curve resolution-alternating least squares (MCR-ALS), yielding a host of data and information, which otherwise would have been impossible to obtain. The extracted profiles corresponded to the spectra of the single species in the APT/BSA mixture. In addition, the presence of the APT–BSA complex was demonstrated, and it was shown that the associated quenching of the fluorescence from the BSA protein resulted from the formation of APT–BSA complex via a static mechanism. The binding constant ( K a(ave) = 2.34 × 10 6 L mol −1) and the number of sites ( n = 1) were obtained by fluorescence methods as were the thermodynamic parameters (Δ H 0, Δ S 0 and Δ G 0). This work suggested that the principal binding between APT to BSA was facilitated by hydrophobic interactions. The thermodynamic parameters for APT were compared to those from the structurally similar Chrysin and Wogonin molecules. It appeared that the entropy parameters were relatively more affected by the small structural changes. SFS from the interaction of BSA and APT showed that the ligand affected the conformation of BSA. The competitive interaction of APT and site makers with BSA indicated site I as the binding area of APT in BSA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Analytica Chimica Acta
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.