This study characterized P2X receptors in guinea pig ileum myenteric S neurons (n = 124) in vitro using electrophysiological methods. ATP or alpha,beta-methylene ATP (alpha,beta-mATP), an agonist at P2X(1) and P2X(3) subunit containing receptors, depolarized 103 neurons (85%). Pyridoxal-phosphate-6-azophenyl-2',4' disulfonic acid (10 micromol L(-1)) blocked ATP- and alpha,beta-mATP-induced depolarizations. ATP-induced depolarizations and fast excitatory postsynaptic potentials (fEPSPs) were reduced by trinitrophenyl-ATP (10 micromol L(-1)), an antagonist that can block P2X(3) receptors. Ivermectin (10 micromol L(-1)), a modulator of P2X(4) and P2X(4/6) receptors, had no effect on alpha,beta-mATP-induced depolarizations. In 58% of neurons, the alpha,beta-mATP induced-depolarization was followed by an afterhyperpolarization (AHP) (P2X-AHP). Under voltage clamp, alpha,beta-mATP induced an inward current followed by an outward current which reversed polarity at 0 and -80 mV respectively. The P2X-AHP was reduced in low extracellular Ca(2+) solutions. Blockers of large, intermediate and small conductance Ca(2+)-activated K(+) channels or voltage-gated K(+) channels did not inhibit the P2X-AHP. Half of the neurons exhibiting the P2X-AHP contained nitric oxide synthase (NOS)-immunoreactivity (ir). In summary, NOS-ir S neurons express P2X(3) subunit containing P2X receptors. P2X receptors couple to activation of a Ca(2+)-activated K(+) conductance that mediates an AHP. As P2X receptors contribute to fEPSPs, the P2X-AHP may modulate S neuron excitability during purinergic synaptic transmission.
Read full abstract