Gold nanoparticles (GNPs) have previously been suggested as appropriate carriers for allergen-specific immunotherapy (AIT). In this study, we assessed efficacy of GNPs and dendritic cells (DC)-specific aptamer-modified GNPs (Apts-GNP) for epicutaneous immunotherapy (EPIT) in the case of pollen allergen extracts containing a variety of allergenic and non-allergenic components. BALB/c mice were sensitized to the total protein extract of Platanus orientalis pollen and epicutaneously treated in different groups either with free P. orientalis total pollen extract, naked GNPs, total extract loaded GNPs, and total extract loaded Apts-GNPs with and without skin-penetrating peptides (SPPs). Then, the specific IgE level (sIgE), total IgE concentration (tIgE) in the serum sample, IL-4, IL-17a, IFN-γ, and IL-10 cytokine concentrations in re-stimulated splenocytes with the total extract and mixture of recombinant allergens, nasopharyngeal lavage fluid (NALF) analysis, and histopathological analysis of lung tissue were evaluated. This study indicated the total extract-loaded GNPs, especially Pla. ext (50 μg)-GNPs, significantly decreased sIgE, tIgE, IL-17a, and IL-4 concentrations, immune cells and eosinophils infiltration in NALF, and increased IL-10 and IFN-γ concentrations compared with the PBS-treated group. In addition, the histopathological analysis of lung tissue showed a significant decrease in allergic inflammation and histopathological damage. The DC-targeted group revealed the most significant improvement in allergic-related immune factors with no histopathological damage compared with the same dose without aptamer. Loading total protein extract on the GNPs and the Apt-modified GNPs could be an effective approach to improve EPIT efficacy in a pollen-induced allergic mouse model.