Abstract

BackgroundExtensions of mesenchymal stem cells (MSCs) in vitro may lead to the loss of their biological functions. However, hypoxic culturation has been shown to enhance the proliferation, survival, and immunomodulatory capacity of MSCs. ObjectiveWe aimed to investigate the effects of long-term hypoxic cultivation on the properties of human umbilical cord-derived MSCs (hUCMSCs) and the therapeutic effects of their extracellular vesicles (EVs) in allergic rhinitis (AR). MethodsProliferation, senescence, telomerase activity and multipotent properties of hUCMSCs were analyzed under long-term culturation of hypoxia (1%) or normoxia (21%), and the therapeutic effects of their conditional medium (CM) and EVs were evaluated in OVA-induced AR mice. Effects of hypoxia-EVs (Hy-EVs) or normoxia-EVs (No-EVs) on human monocyte-derived dendritic cells (DCs) were investigated, and the possible mechanisms of Hy-EVs in induction of immunotolerance were further explored. ResultsLong-term hypoxia significantly promoted the proliferation, inhibited cell senescence, maintained the multipotent status of hUCMSCs. Hy-CM and Hy-EVs showed better therapeutic effects in AR mice compared to No-EVs, seen as improvement of AR-related behaviors such as rubbing and sneezing, and attenuation of inflammation in nasal tissues. In addition, Hy-EVs significantly reduced the expressions of HLA-DR, CD80, CD40, and CD83 induced by OVA plus LPS in DCs, inhibiting the maturation of DCs. Furthermore, we observed that VEGF was remarkably enriched in Hy-EVs, but not in No-EVs, and the inhibition of DCs maturation was markedly neutralized by VEGF antibodies, suggesting that VEGF derived from Hy-EVs was responsible for the inhibition of DCs maturation. ConclusionOur results demonstrated that long-term hypoxia significantly promoted the proliferation, inhibited cell senescence, maintained the multipotent status of hUCMSCs, and hypoxia treated hUCMSCs-derived EVs enhanced their therapeutic effects in AR mice through VEGF-mediated inhibition of DCs maturation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call