Abstract
Recent studies indicate that cardiac transfer of adult stem cells can have a favorable impact on tissue perfusion and contractile performance of the infarcted heart. Several cell sources are being explored in an effort to regenerate infarcted myocardium, including hematopoietic stem cells, endothelial progenitor cells, cardiac resident stem cells, bone marrow–derived multipotent stem cells, and mesenchymal stem cells (MSCs). Each of these cell types may have its own profile of advantages, limitations, and practicability issues in specific settings. Studies comparing the regenerative capacity of distinct cell populations are scarce. Most clinical investigators have therefore chosen a pragmatic approach by using unselected bone marrow cells that contain different stem cell populations. Basic scientists, by contrast, are focusing more on specific cell populations in a quest to understand the biological foundations of cell therapy and to identify the most promising stem cells for cardiac regeneration.1 See p 214 MSCs are a rare population of self-renewing, multipotent cells present in adult bone marrow. Although MSCs represent <0.01% of all nucleated bone marrow cells, they can be readily expanded in vitro. In defined culture media, MSCs differentiate into several mesenchymal cell lineages, including cardiomyocytes.2,3 When injected into normal adult myocardium, MSCs differentiate into cardiomyocyte-like cells with sarcomeric organization.4 In an earlier study in pigs with myocardial infarction (MI), MSCs grafted into the infarcted area were shown to express muscle-specific markers and to improve regional wall motion.5 Ease of isolation, high expansion capability, and cardiomyogenic potential have led to the proposition that MSCs may be a good choice for cell-based therapies of MI.6 In a report published in this issue of Circulation , Dai et al7 have …
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.