Surfactants play a crucial role in various industrial applications, including detergents and personal care products. However, their widespread use raises concerns due to their potential environmental impact and health risks, particularly in aquatic ecosystems, where they can disrupt the balance of marine life and accumulate in water sources, posing challenges to sustainable development. This study investigates the environmental and health implications of anionic and nonionic surfactants, focusing on their toxicity, biodegradation, and skin irritation potential profiles, especially when combined with silica nanoparticles. Toxicity assessments were conducted using bacteria Vibrio fischeri for aquatic toxicity and Lepidium sativum seeds for terrestrial plant effects, revealing that individual surfactants like the anionic alkyl ether carboxylic acid EC-R12-14E3 exhibit high toxicity levels, while the nonionic fatty-alcohol ethoxylate FAE-R12-14E11 shows comparatively lower environmental impact. The toxicity of surfactant mixtures was analysed, revealing both antagonistic and synergistic effects depending on the surfactants used. The addition of silica nanoparticles generally mitigates the overall toxicity of surfactants, whether used individually or in mixtures. Biodegradation studies followed OECD 301E and 301F guidelines, indicating that individual surfactants generally meet or approach the mineralization threshold, whereas the addition of nanoparticles reduced biodegradation efficacy. Potential skin irritation was predicted through the zein number (ZN), finding that some surfactant combinations with silica nanoparticles reduce irritation levels, highlighting their potential for safer formulation in products that come into direct contact with the skin. Overall, the findings emphasize the need for careful selection of surfactant mixtures and nanoparticle integration to minimize environmental toxicity and potential skin irritation and increase their biodegradability.
Read full abstract