Abstract

Self-consistent field (SCF) calculations and light scattering experiments were performed to study the pH and salt response of micelles composed of surfactants with a single weak acid group in aqueous salt solution. To this end, the common surfactant Brij 35 was oxidized to yield a polyoxyethylene alkyl ether carboxylic acid with a single terminal weakly charged carboxylic acid group in alkaline media. At low pH values, the micellar hydrodynamic radii (Rh) are independent of the salt concentration. By contrast, at pH values around the acid dissociation constant (pH ≈ pKa ± 1), the micellar radius decreases upon increasing pH until a salt-dependent plateau value is reached. The reduction in micellar size is more pronounced for lower salt concentrations. The SCF computations are in qualitative agreement with the experimental results and further reveal a limiting value for Rh corresponding approximately to the Debye length λD. Self-assembly into micelles is suppressed for low salt concentrations that would yield Rh < λD. Instead, the surfactants remain as unimers in solution. The results are summarized in a state diagram displaying the preferred surfactant configuration in solution as a function of Rh/λD, pH and salt concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.