2-Substituted-4H-1,3,2-benzodioxaphosphorin 2-oxides (2-substituted-BDPOs) are known to be potent neuropathy target esterase (NTE) inhibitors (I50s for the racemates of 0.2-3 nM) when the 2-substituents are n-alkyl (C5-C12), N-alkoxy (C7-C10), or p-n-alkylbenzyl (C3 and C4). The list of potent inhibitors (I50s < 3 nM) is expanded by the new n-alkylamino (C9) and n-alkylthio (C5, C7, and C9) analogs reported here. The optimal chain length of the 2-substituent is about 10 atoms in the alkylamino and alkylthio series as in our previous study on alkyl and alkoxy moieties. In contrast, an I50 of 60 nM is reported for o-methylphenoxy-BDPO, the neuropathic metabolite of tri-o-cresyl phosphate (TOCP). In addition to substituent effects, each of these compounds contains two enantiomers of unknown stereospecificity as NTE inhibitors. Separation by chiral HPLC with the CHIRALCEL OC column and hexane-2-propanol eluent gives individual enantiomers of > 98% e.e. and a stereospecificity for NTE inhibition depending on the type and chain length of the 2-substituent; e.g., the ratio for inhibitory potency of the individual enantiomers is 1.7-fold for nonylthio, 1255-fold for nonylamino, and 9-fold for the TOCP metabolite. In comparing enantiomeric pairs of BDPOs with alkyl, alkoxy, alkylamino, alkylthio, benzyl, p-butylbenzyl, o-methylphenoxy, or phenyl as the 2-substituent, the more retained enantiomer in HPLC is always the better NTE inhibitor (in a series of twenty-two pairs) and housefly toxicant (based on two pairs) than the less retained one.(ABSTRACT TRUNCATED AT 250 WORDS)
Read full abstract