Photoalignment technology enables macroscopic alignment of liquid crystalline molecules and their aggregates in a non-contact process by irradiating photo-responsive liquid crystalline compounds with linearly polarized light. Because photoalignment techniques prevent dust generation and uneven stretching, and accomplish fine and complex patterning, they are involved in the practical process of fabricating display panels, and continue to be applied in the research and creation of various anisotropic materials. Brilliant yellow (BY), a chromonic liquid crystal, has attracted considerable attention as the photoalignment sublayer in recent years, because of its ability to induce a high dichroic nature among many photo-responsive liquid crystalline materials. However, its dichroism is not maintained after prolonged exposure to a humid environment because of its intrinsic strong hygroscopicity of ionic BY molecules. In this study, to overcome this drawback, the photoalignment and successive photo-fixation of the BY columnar phase is proposed using UV-curable ionic polysiloxane as a matrix. Visible light was used for the photoalignment of the BY columnar phase, and UV light for photo-fixation. Consequently, the columnar chromonic phase is found to retain its orientation even after 4 h of exposure to a highly humid environment.
Read full abstract