The cis-regulatory data that help in transcriptional regulation is arranged into modular pieces of a few hundred base pairs called CRMs (cis-regulatory modules) and numerous binding sites for multiple transcription factors are prominent characteristics of these cis-regulatory modules. The present study was designed to localize transcription factor binding site (TFBS) clusters on twelve Anterior-posterior (A-P) genes in Tribolium castaneum and compare them to their orthologous gene enhancers in Drosophila melanogaster. Out of the twelve A-P patterning genes, six were gap genes (Kruppel, Knirps, Tailless, Hunchback, Giant, and Caudal) and six were pair rule genes (Hairy, Runt, Even-skipped, Fushi-tarazu, Paired, and Odd-skipped). The genes along with 20 kb upstream and downstream regions were scanned for TFBS clusters using the Motif Cluster Alignment Search Tool (MCAST), a bioinformatics tool that looks for set of nucleotide sequences for statistically significant clusters of non-overlapping occurrence of a given set of motifs. The motifs used in the current study were Hunchback, Caudal, Giant, Kruppel, Knirps, and Even-skipped. The results of the MCAST analysis revealed the maximum number of TFBS for Hunchback, Knirps, Caudal, and Kruppel in both D. melanogaster and T. castaneum, while Bicoid TFBS clusters were found only in D. melanogaster. The size of all the predicted TFBS clusters was less than 1kb in both insect species. These sequences revealed more transversional sites (Tv) than transitional sites (Ti) and the average Ti/Tv ratio was 0.75.
Read full abstract