Solid-state ionic method has attracted more and more attention due to its simple operation and controllable preparation, but its growth mechanism is still uncertain. In this work, Ag nanowire (Ag NW) arrays prepared by solid-state ionics method at 5 μA impressed currents using fast ionic conductor RbAg4I5 films and different metal electrodes were reported. The conduction mode of Ag+ in RbAg4I5 films, the growth mechanism of Ag NW arrays prepared by solid-state ionics method and the effect of microscopic morphology on surface-enhance Raman scattering (SERS) performance were investigated. The results show that Ag nanoparticles (Ag NPs) with diameters from 40 nm to 70 nm were attached to the surface of Ag NW arrays with diameters of 80–150 nm prepared with different metal electrodes, which lead to Ag NW arrays have high surface roughness. The conduction velocity and stability of Ag+ in RbAg4I5 films are closely related to the morphology of Ag NW arrays. The irregular electrode interface and apical growth advantage resulted in the fractal dimension of Ag NW arrays prepared with Ag electrodes is 1.69 due to macroscopic dendritic structure. Ag NW arrays have excellent SERS performance due to the many Ag NPs attached to the surface of the closely aligned Ag NWs, the limit of detection (LOD) for Basic Fuchsin (BF) and Crystal Violet (CV) detected by Ag NW arrays SERS substrates prepared with Ag electrodes are as low as 10−11and 10−14mol/L, respectively. This paper provides a reference for the preparation method of metal nanostructures, Ag NW arrays have good potential for application in the field of trace analysis.
Read full abstract