Abstract
Pd based alloy materials with hollow nanostructures are ideal hydrogen (H2) sensor building blocks because of their double-H2 sensing active sites (interior and exterior side of hollow Pd alloy) and fast response. In this work, for the first time, we report a simple fabrication process for preparing hollow Pd-Ag alloy nanowires (Pd@Ag HNWs) by using the electrodeposition of lithographically patterned silver nanowires (NWs), followed by galvanic replacement reaction (GRR) to form palladium. By controlling the GRR time of aligned Ag NWs within an aqueous Pd2+-containing solution, the compositional transition and morphological evolution from Ag NWs to Pd@Ag HNWs simultaneously occurred, and the relative atomic ratio between Pd and Ag was controlled. Interestingly, a GRR duration of 17 h transformed Ag NWs into Pd@Ag HNWs that showed enhanced H2 response and faster sensing response time, reduced 2.5-fold, as compared with Ag NWs subjected to a shorter GRR period of 10 h. Furthermore, Pd@Ag HNWs patterned on the colorless and flexible polyimide (cPI) substrate showed highly reversible H2 sensing characteristics. To further demonstrate the potential use of Pd@Ag HNWs as sensing layers for all-transparent, wearable H2 sensing devices, we patterned the Au NWs perpendicular to Pd@Ag HNWs to form a heterogeneous grid-type metallic NW electrode which showed reversible H2 sensing properties in both bent and flat states.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have