Blood vessel segmentation of the retina has become a necessary step in automatic disease identification and planning treatment in the field of Ophthalmology. To identify the disease properly, both thick and thin blood vessels should be distinguished clearly. Diagnosis of disease would be simple and easier only when the blood vessels are segmented accurately. Existing blood vessel segmentation methods are not supporting well to overcome the poor accuracy and low generalization problems because of the complex blood vessel structure of the retina. In this study, a hybrid algorithm is proposed using binarization, exclusively for segmenting the vessels from a retina image to enhance the exactness and specificity of segmentation of an image. The proposed algorithm extracts the advantages of pattern recognition techniques, such as Matched Filter (MF), Matched Filter with First-order Derivation of Gaussian (MF-FDOG), Multi-Scale Line Detector (MSLD) algorithms and developed as a hybrid algorithm. This algorithm is authenticated with the openly accessible dataset DRIVE. Using Python with OpenCV, the algorithm simulation results had attained an accurateness of 0.9602, a sensitivity of 0.6246, and a specificity of 0.9815 for the dataset. Simulation outcomes proved that the proposed hybrid algorithm accurately segments the blood vessels of the retina compared to the existing methodologies.
Read full abstract