This paper presents the algebro-geometric method for computing explicit formula solutions for algebraic differential equations (ADEs). An algebraic differential equation is a polynomial relation between a function, some of its partial derivatives, and the variables in which the function is defined. Regarding all these quantities as unrelated variables, the polynomial relation leads to an algebraic relation defining a hypersurface on which the solution is to be found. A solution in a certain class of functions, such as rational or algebraic functions, determines a parametrization of the hypersurface in this class. So in the algebro-geometric method the author first decides whether a given ADE can be parametrized with functions from a given class; and in the second step the author tries to transform a parametrization into one respecting also the differential conditions. This approach is relatively well understood for rational and algebraic solutions of single algebraic ordinary differential equations (AODEs). First steps are taken in a generalization to systems and to partial differential equations.