Abstract
In this paper, a Chebyshev spectral collocation domain decomposition (DD) semi-discretization by using a grid mapping, derived by Kosloff and Tal-Ezer in space is applied to the numerical solution of the generalized Burger’s–Huxley (GBH) equation. To reduce roundoff error in computing derivatives we use the above mentioned grid mapping. In this work, we compose the Chebyshev spectral collocation domain decomposition and Kosloff and Tal-Ezer grid mapping, elaborately. Firstly, the theory of application of the Chebyshev spectral collocation method with grid mapping and DD on the GBH equation is presented. This method yields a system of ordinary differential algebraic equations (DAEs). Secondly, we use a fourth order Runge–Kutta formula for the numerical integration of the system of DAEs. Application of this modified method to the GBH equation show that this method (M-DD) is faster and more accurate than the standard Chebyshev spectral collocation DD (S-DD) method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.