Ultrasound is sound waves above 20kHz that can be used as a nonthermal ''green'' technology for agri-food processing. It has a cavitation effect, causing bubbles to form and collapse rapidly as they travel through the medium during ultrasonication. Therefore, it inactivates microorganisms and enzymes through cell membrane disruption with physicochemical and sterilization effects on foods or beverages. This emerging technology has been explored in wineries to improve wine color, taste, aroma, and phenolic profile. This paper aims to comprehensively review the research on ultrasound applications in the winery and alcoholic beverages industry, discuss the impacts of this process on the physicochemical properties of liquors, the benefits involved, and the research needed in this area. Studies have shown that ultrasonic technology enhances wine maturation, improves wine fermentation, accelerates wine aging, and deactivates microbes while enhancing quality, as observed with better critical aging markers such as phenolic compounds and color intensity. Besides, ultrasound enhances phytochemical, physicochemical, biological, and organoleptic properties of alcoholic beverages. For example, this technology increased anthocyanin in red wine by 50%. It also enhanced the production rate by decreasing the aging time by more than 90%. Ultrasound can be considered an economically viable technology that may contribute to wineries' waste valorization, resource efficiency improvement, and industry profit enhancement. Despite numerous publications and successful industrial applications discussed in this paper, ultrasound up-scaling and applications for other types of liquors need further efforts.