Alcohol can act quickly in the human body and alter mood and behavior. If alcohol is consumed in excess, it will accumulate in the organs of the body, especially in the liver and brain. To a certain extent, the symptoms of alcoholism will appear. So far, the main method of diagnosis of alcoholic brain injury is through MRI images by radiologists. However, this is a very subjective diagnosis. Radiologists may be affected by external factors, such as physical discomfort, lack of rest, inattention, etc., resulting in diagnostic errors. In this paper, we proposed a novel 8-layer customized deep convolution neural network for alcoholic brain injury detection, which contains five convolution layers, five pooling layers, and three fully connected layers. There are three improvements in this paper, (i) Based on deep learning, we proposed a method for automatic diagnosis of alcoholic brain injury; (ii) We introduced Dropout to the proposed structure to improve robustness; (iii) Compared with other state-of-the-art approaches, the proposed structure is more efficient. The experimental results showed that the sensitivity, specificity, precision, accuracy, F1, MCC and FMI were 96.14±1.99, 96.20±1.47, 95.98±1.54, 96.17±1.55, 96.05±1.62, 93.34±3.11, 96.06±1.62 respectively. According to comparison results, our method performed the best. The proposed model is effective in detecting alcoholic brain injury based on MRI images.
Read full abstract