Although ionic conductive hydrogels (ICHs) have been widely utilized to fabricate excellent flexible sensors, traditional ICHs are generally easy to swell, resulting in the inevitable failure of flexible sensors. Herein, a facile and effective strategy is employed to impart ICHs with excellent mechanical properties, satisfying anti-swelling property, favorable anti-freezing property, and high ion-conductivity simultaneously, that is to construct multiple hydrogen bonds (H-bonds) through directly dissolving cellulose in salt solutions, avoiding the tedious preparation process of traditional ICHs as well. Notably, the cellulose is directly dissolved in the solution containing zinc ions (Zn2+) and aluminum ions (Al3+), and then acrylic acid (AA) and acrylamide (AAm) are copolymerized in it. Multiple H-bonds are formed among the abundant − OH groups, −NH2 groups, and − COOH groups belonging to cellulose, AAm, and AA, respectively. As a result, the improved anti-swelling ability (88.03 %) and compressive performance (24.11 MPa) of the resultant Ion-C-P(AA-co-AAm) hydrogel are achieved. Besides, excellent conductivity (48.39 mS/cm) and frost resistance are provided by generous Zn2+ and Al3+. Moreover, Ion-C-P(AA-co-AAm) hydrogel exhibits favorable sensitivity in monitoring human activities and can output stable electrical signals in a low-temperature environment, showing a great potential application for flexible sensors.
Read full abstract