In the past few years, meteoritic and cometary impacts have emerged as a major geological agent in the construction and evolution of planetary surfaces. Formation of complex central ring, peak ring and multiring craters involves excavation and melting of large volumes of crustal material. High-resolution geophysical mapping measuring gravity, magnetics, and topography of the Moon and Mars have recently provided information on the subsurface structure of large basins and aided in identifying buried giant craters. The terrestrial crater record has been significantly erased by tectonic, magmatic, and erosion processes and only a small proportion of impact structures remain. Record of multiring craters is limited to three examples: Vredefort, Sudbury and Chicxulub. Deep geophysical surveys and geochemical and isotopic studies of those craters provide means to evaluate the influence of large impacts on the lithospheric and crustal evolution by providing estimates of excavation depth and volume, amounts of material fragmented, ejected, vaporized and melted, and effects on the crustal stratigraphy and crustal thickness. Analyses on the melt from Vredefort, Sudbury, and Chicxulub indicate andesitic composition derived from lower-crustal material. The melt formed inside the lower transient cavity from lower crustal material that was then redistributed and emplaced in upper-crustal levels, resulting in crustal redistribution. Crystalline basement clasts fragmented and incorporated into the breccias show varying degrees of alteration but no significant thermal effects. Ejecta were deposited locally within the crater region and ballistic material and fine ejecta are globally distributed on the planetary surface. Impacts influence the crust–mantle boundary, with Moho uplift. Material from the mantle was not incorporated into the melt and impact breccias, indicating that the excavation cavities were confined to the lower crust. This is also apparently the case for the giant basins on the Moon, including the 2500 km diameter South Pole-Aitken Basin. Considering the numbers of large multiring basins, possible flux of large impacts, and effects on target surfaces, crustal scale redistribution of material during those large impacts has played a major role in the evolution of planetary surfaces.