Abstract
Age determinations of lunar mare basalts are essential for understanding the thermal evolution of the Moon. In this study, we performed new crater size-frequency measurements in mare deposits in the central region of the northern farside, consisting of Lacus Luxuriae, Buys-Ballot, Campbell, and Kohlschutter, using high-resolution images obtained by SELENE (Kaguya) Terrain Camera. The estimated model ages of the mare deposits range from 2.7 to 3.5 Ga. On the basis of model ages for all investigated mare deposits in the central part of the northern farside, considering the results of previous studies, we concluded that mare volcanism in this region began at least as early as 3.9 Ga and continued until ∼2.6 Ga. From a comparison of model ages in the region and the South Pole-Aitken basin, we found that mare volcanism in these regions ended at the same time, suggesting that the South Pole-Aitken basin formation impact had a minor effect on mare volcanism in the region.
Highlights
Unraveling the volcanic history of the Moon is essential for understanding its origin and thermal evolution
From a comparison of model ages in the region and the South Pole-Aitken basin, we found that mare volcanism in these regions ended at the same time, suggesting that the South Pole-Aitken basin formation impact had a minor effect on mare volcanism in the region
Our results indicate that mare volcanism in Lacus Luxuriae began at least ∼3.7 Gyr ago and continued through the Late Imbrian Epoch, that is consistent with the previous mapping as Imbrian age (Stuart-Alexander, 1978). 3.2 Buys-Ballot
Summary
Unraveling the volcanic history of the Moon is essential for understanding its origin and thermal evolution. A considerable number of nearside maria have been dated by using image data from Lunar Orbiters and Apollo missions (e.g., Wilhelms and McCauley, 1971; Boyce, 1976; Wilhelms, 1987; Hiesinger et al, 2000, 2003, 2006, 2008; Bugiolacchi and Guest, 2008). These studies revealed that the largest number of mare basalts formed in the Late Imbrian Epoch at 3.2 to 3.8 Ga, indicating good
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have