Abstract Temperature profiles of the lower atmosphere (<3 km) over complex urban areas are related to health risks, including heat stress and respiratory illness. This complexity leads to uncertainty in numerical simulations, and many studies call for more observations of the lower atmosphere over cities. Using 20 years of observations from the Aircraft Meteorological Data Relay (AMDAR) program over Dallas–Fort Worth, Texas, average profiles every 0.5 h are created from the 1.5 million individual soundings. Dallas–Fort Worth is ideal because it is a large urban area in the central Great Plains, has no major topographic or coastal influences, and has two major airports near the center of the urban heat island. With frequent and high-quality measurements over the city, we investigate the evolution of the lower atmosphere around sunrise to quantify the stability, boundary layer height, and duration of the morning transition when there are southerly winds, few clouds, and no precipitation so as to eliminate transient synoptic events. Characteristics of the lower atmosphere are separated by season and maximum wind speed because the the Great Plains low-level jet contributes to day-to-day variability. In all seasons, stronger wind over the city leads to a weaker nocturnal temperature inversion at sunrise and a shorter morning transition period, with the greatest difference during autumn and the smallest difference during summer. During summer, the boundary layer height at sunrise is higher on average, deepens the most as wind strengthens, and has the fewest days exhibiting a surface temperature inversion over the city. Significance Statement Cities impact health by creating an urban heat island caused by more heating at the surface, less evaporative cooling, and increased anthropogenic waste heat, and they can have high pollution. Cooling overnight stabilizes the lower atmosphere and traps pollutants near the surface until surface heating after sunrise mixes them away. Inadequate pollution observations make it difficult to study these issues. The greatest mixing occurs about 2 h after sunrise but can be modulated by wind speed. Observations from 1.5 million aircraft landing and taking off over Dallas–Fort Worth, Texas, reveal that strong low-level wind leads to morning transitions ending 0.84 h earlier on average than with light wind. Details from this vast dataset contribute to improved understanding of the lower atmosphere over cities and provide a baseline for simulations.