In the context of the development of high-speed compound helicopters, the main rotor may not be an efficient propulsive device at high speeds and adding a propulsive propeller is a means to enable higher speed. On such configuration, at low speed, the propellers are in strong interactions with the main rotor wake which affects their performance and aircraft maneuverability. The present work numerically investigates the aerodynamics of the rotor/propeller interaction on rotorcraft similar to the Racer from Airbus Helicopters. Through the comparison of two different levels of fidelity for three different advance ratios, it is shown that at high advance ratio, a simple free wake model is suitable to give most of the interaction effects, while in hover, a full computational fluid dynamics (CFD) unsteady computation is necessary to better capture all the unsteadiness of the interaction. The detailed analysis of CFD results also outlines the different behaviors of the propeller when it is fully inside the rotor wake or out of it, and therefore the need for a precise control of the rotorcraft in the transition between hover to fast forward flight.