Abstract

The multichannel and fixed parameters radars for tracking targets with the phased array antennas are widely used in modern military surveillance systems. The modular integration of a phased antenna array with digital processors allows to realize the command and control functions of antenna patterns for tracking multiple targets in the time resolution modes. Tracking of the air targets in range, radial speed and angular coordinates of evaluations and azimuth is provided by means of the multichannel radars without adaptation modes to the characteristics of external influences. Thus, adjusting the algorithms of tracking systems to the maximum maneuverability of the air targets can lead to a significant reduction in the accuracy of surveillance in comparison with the potentially achievable accuracy for such radars of tracking the linear flight targets in the long duration of time. In the case of adjusting the algorithms of tracking systems to either low intensity of flying targets, or lack of the aircraft maneuvering, it is possible to significantly increase the error of the aircraft flying information, and as a result to have a disruption of tracking the air targets. The increase in the parameters of the tracking error in relation to the influence of external interference were obtained as a result of the study. As a result of research, it is possible to assess the feasibility of adapting to certain characteristics of external influences, and provide recommendations for selecting and fixing the parameters of algorithms of tracking systems to ensure their versatility to surveillance targets with both high maneuverability, and implementing the stealth technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.