Amorphous In–Ga–Zn–O (a-IGZO) thin-film transistor (TFT) memories with novel p-SnO/n-SnO2 heterojunction charge trapping stacks (CTSs) are investigated comparatively under a maximum fabrication temperature of 280 °C. Compared to a single p-SnO or n-SnO2 charge trapping layer (CTL), the heterojunction CTSs can achieve electrically programmable and erasable characteristics as well as good data retention. Of the two CTSs, the tunneling layer/p-SnO/n-SnO2/blocking layer architecture demonstrates much higher program efficiency, more robust data retention, and comparably superior erase characteristics. The resulting memory window is as large as 6.66 V after programming at 13 V/1 ms and erasing at –8 V/1 ms, and the ten-year memory window is extrapolated to be 4.41 V. This is attributed to shallow traps in p-SnO and deep traps in n-SnO2, and the formation of a built-in electric field in the heterojunction.
Read full abstract