As wireless signals are broadcast in nature, which implies that, a broadcast communication purposive to a predetermined destination may be received by a non-intended intermediate station. Cooperative transference, which employ interposed stations to pass on the eavesdropped data to attain the contrast gains, has a substantial capability to revamp the channeling effectiveness in wireless systems. In this it is evident that having cooperation amid stations in a wireless system can accomplish higher throughput with enhanced network lifetime. Proffered work bestows a model for medium access layer called Cooperative MAC protocol based on optimal Data Rate (CMAC-DR). In the proffered work, stations with more data rate aid stations having lesser data rate in their communication by redirecting their congestion. In CMAC-DR model, utilizing the conveyance of eavesdropped information, potential helper stations with more data rate Send out Helper Ready to Send (HRTS), the stations with less data rate maintains a table, called Co-op table of potential helper stations, that can aid in its transmissions. During communication, the source station with low data rate chooses either transmitting by the way of a helper station, so that it lowers the end to end transference delay and increases the throughput or opt only direct transmission, if no potential helper is found or if CMAC-DR becomes an overhead. By analyzing varied simulated scenarios, CMAC-DR evaluates the elevation in the overall network lifetime, throughput and minimization of delay. The CMAC-DR protocol is unambiguous and in accordant with legacy 802.11 also when compared to this, we find improved performance in terms of delay throughput and network lifetime since data rate is considered as relay selection condition.
Read full abstract