The bond strength of tension lap splices in recycled-coarse-aggregate-reinforced concrete strengthened with hybrid (steel–polyolefin) fibers was experimentally investigated. This study was conducted with the help of twelve lap-spliced beam specimens. The replacement level of coarse natural aggregates with recycled concrete aggregate (RCA) was 100%. The following variables were investigated: various ranges of steel–polyolefin fibers—100–0%, 75–25%, 50–50%, 25–75%, and 0–100%—in which the total volume fraction of fibers (Vf) remains constant at 1%; and two lengths of lap splices for rebars of 16 mm diameter (db): 10 db and 15 db. The test results showed that the best range of steel–polyolefin fibers that gave the highest bond strength was 50–50%. The ductility of the fiber-reinforced recycled-aggregate (FR-RA) concrete was significantly improved for all the cases of various relative ratios of steel and polyolefin fibers. The bond strength was also predicted using three empirical equations proposed by Orangun et al., Darwin et al., and Harajli. This study showed that the Harajli equation gave a more accurate estimation of the bond strength of reinforcing bars embedded in FR-RA concrete than those proposed by Orangun et al. and Darwin et al.
Read full abstract