Abstract The annual, seasonal, and diurnal spatiotemporal heavy convective precipitation patterns over a pan-European domain are analyzed in this study using a combination of datasets, including the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) (IMERG) precipitation rate product, E-OBS ground-based precipitation gauge data, European climatological gauge-adjusted radar precipitation dataset (EURADCLIM), Operational Programme for the Exchange of Weather Radar Information (OPERA) ground-based radar-derived precipitation rates, and fifth major global reanalysis produced by ECMWF (ERA5) total and convective precipitation products. Arrival Time Difference Network (ATDnet) lightning data are used in conjunction with IMERG and EURADCLIM precipitation rates, with an imposed threshold of 10 mm h−1 to classify precipitation as convective. Annually, the largest convective precipitation accumulations are over the European seas and coastlines. In summer, convective precipitation is more common over the European continent, though relatively large accumulations exist over the northern coastal waters and the southern seas, with a seasonal localized maximum over the northern Adriatic Sea. Activity shifts southward to the Mediterranean and its coastlines in autumn and winter, with maxima over the Ionian Sea, the eastern Adriatic Sea, and the adjacent coastline. Over the continent, 1%–10% of the total precipitation accumulated is classified as convective, increasing to 10%–40% over the surrounding seas. In contrast, 30%–50% of ERA5 precipitation accumulations over land is produced by the convective parameterization scheme and 40%–60% over the seas; however, only 1% of ERA5 convective precipitation accumulations are from rain rates exceeding 10 mm h−1. Regional analyses indicate that convective precipitation rates over the inland mountains follow diurnal heating, though little to no diurnal pattern exists in convective precipitation rates over the seas and coastal mountains.
Read full abstract