The present studies examine the hypothesis that multiple adrenergic neuroeffector mechanisms are not fully developed in fetal, compared with adult, ovine middle cerebral arteries. In arteries denuded of endothelium and pretreated with 1 microM atropine to block involvement of muscarinic receptors, 10 microM capsaicin to deplete sensory peptidergic neurons, and 10 microM nitro-L-arginine methyl ester (L-NAME) to block possible influences from nitric oxidergic innervation, transmural stimulation at 16 Hz increased contractile tensions to 9.5 +/- 3.7% (n = 6) of the potassium maximum in adult arteries. Corresponding values in fetal arteries, however, were significantly less and averaged only 1.1 +/- 0.6% (n =10). However, postsynaptic sensitivity to norepinephrine (NE) was similar in the two age groups; NE pD(2) values (-log EC(50)) averaged 6.11 +/- 0.12 (n = 6) and 6.33 +/- 0.09 M (n = 9) in fetal and adult arteries, respectively. Similarly, NE content measured via HPLC was also similar in the two age groups and averaged 32.4 +/- 5.0 (n = 17) and 32.5 +/- 3.9 ng/ng wet wt (n = 13) in fetal and adult middle cerebral arteries, respectively. In contrast, stimulation-induced NE release was greater in fetal than in adult arteries, whether calculated as total mass released [883 +/- 184 (n = 17) vs. 416 +/- 106 pg NE/mg wet wt (n = 13)] or as fractional release [51.1 +/- 5.3 (n = 17) vs. 22.8 +/- 3.8 pg/pg NE content per pulse x 10(-6)]. Measured as an index of synaptic density, neuronal cocaine-sensitive NE uptake was similar in fetal and adult arteries [1.55 +/- 0.40 (n = 10) and 1.84 +/- 0.51 pmol/mg wet wt (n = 7), respectively]. Overall, age-related differences in postsynaptic sensitivity to NE, NE release, and NE uptake capacity cannot explain the corresponding age-related differences in response to stimulation. The data thus suggest that total synaptic volume and cleft width, in particular, are probably greater and/or that adrenergic corelease of vasoactive substances other than NE is altered in fetal compared with adult middle cerebral arteries.
Read full abstract