Abstract

We investigated the biochemical and physiological mechanisms of action of phentolamine mesylate (Vasomax) in regulating erectile tissue smooth muscle contractility in human and rabbit corpus cavernosum. The binding activity of phentolamine was investigated in a cell-free system by displacement of specific and selective radiolabelled ligands to alpha 1 and 2 adrenergic receptors. The physiologic activity of phentolamine-mediated relaxation of adrenergic and non-adrenergic pre-contracted erectile tissue strips of human and rabbit corpus cavernosum were studied in organ bath chambers. In corpus cavernosum membranes, phentolamine displaced binding of the selective alpha 1 receptor antagonists [125I]HEAT and [3H]prazosin and the alpha 2 receptor antagonists [3H]rauwolscine and [3H]RX 821002 with relatively high affinity. Phentolamine caused concentration dependent relaxation in erectile tissue strips pre-contracted with adrenergic agonists phenylephrine, norepinephrine, oxymetazoline and UK 14,304, as well as with non-adrenergic contractile agents endothelin and KCl. Biochemical and physiologic studies reveal that the concentration of phentolamine required to displace half maximal binding or to produce half-maximal relaxation was similar to that found in human plasma 30 min after ingestion of 40 mg of Vasomax. Reversible inhibition of nitric oxide synthase by L-nitroarginine or mechanical disruption of endothelium diminished non-adrenergic phentolamine-mediated erectile tissue relaxation. Phentolamine mesylate induced relaxation of corpus cavernosum erectile tissue by direct antagonism of alpha 1 and 2 adrenergic receptors and by indirect functional antagonism via a non-adrenergic, endothelium-mediated mechanism suggesting nitric oxide synthase activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.