Identifying cognitive and neural mechanisms of decision making in adolescence can enhance understanding of, and interventions to reduce, risky health behaviors in adolescence. Delay discounting, or the propensity to discount the magnitude of temporally distal rewards, has been associated with diverse health risk behaviors, including risky sex. This cognitive process involves recruitment of reward and cognitive control brain regions, which develop on different trajectories in adolescence and are also implicated in real-world risky decision making. However, no extant research has examined how neural activation during delay discounting is associated with adolescents' risky sexual behavior. To determine whether a relationship exists between adolescents' risky sexual behavior and neural activation during delay discounting. Adolescent participants completed a delay discounting paradigm during functional magnetic resonance imaging (fMRI) scanning, and they reported risky sexual behavior at baseline, 3-, 6-, 9-, and 12-month follow-up time points. Latent growth curve models were employed to determine relationships between brain activation during delay discounting and change in risky sexual behavior over time. Greater activation in brain regions associated with reward and cognitive control (caudate, putamen, nucleus accumbens, anterior cingulate, insula, orbitofrontal cortex, inferior frontal gyrus, dorsolateral prefrontal cortex) during delay discounting was associated with lower mean levels of risky sexual behavior but greater growth over the period from baseline to 6 months. Neural activation during delay discounting is cross-sectionally and prospectively associated with risky sexual behavior in adolescence, highlighting a neural basis of risky decision-making as well as opportunities for early identification and intervention.
Read full abstract