Oncolytic peptide LTX-315 while showing clinical promise in treating solid tumors is limited to intratumoral administration, which is not applicable for inaccessible or metastatic tumors. The cationic and amphipathic nature of oncolytic peptides engenders formidable challenges to developing systems for their systemic delivery. Here, we describe cRGD-functionalized chimaeric polymersomes (cRGD-CPs) as a robust systemic delivery vehicle for LTX-315, which in combination with CpG adjuvant and anti-PD-1 boost immunotherapy of malignant B16F10 melanoma in mice. cRGD-CPs containing 14.9 wt% LTX-315 (cRGD-CPs-L) exhibited a size of 53 nm, excellent serum stability, and strong and selective killing of B16F10 cells (versus L929 fibroblasts) in vitro, which provoked similar immunogenic effects to free LTX-315 as revealed by release of danger-associated molecular pattern molecules. The systemic administration of cRGD-CPs-L gave a notable tumor accumulation of 4.8% ID/g and significant retardation of tumor growth. More interestingly, the treatment of B16F10 tumor-bearing mice was further boosted by co-administration of polymersomal CpG and anti-PD-1 antibody, in which two out of seven mice were cured as a result of strong immune response and long-term immune memory protection. The immunotherapeutic effect was evidenced by secretion of IL-6, IFN-γ and TNF-α, tumor infiltration of CD8+ CTLs and Th, and induction of TEM and TCM in spleen. This study opens a new avenue to oncolytic peptides, which enables durable immunotherapy of tumors via systemic administration.
Read full abstract