Abstract

IntroductionCancer cells induced into immunogenic cell death (ICD) in vitro can be directly used as a whole cell vaccine for tumor immunotherapy with many advantages, especially enacting immediate and intense ‘eat me’ signals to engage immune system. Unfortunately, there have been few successes with in vitro ICD cancer cells as a treatment vaccine. ObjectiveTo demonstrate that cancer cells treated in vitro with a new class of potent ICD inducer, naphthylquinoxaline thymidine conjugate (NAP) followed by UVA irradiation would be able to act as an effective tumor immunotherapy directly. MethodsThe therapeutic potentials of treated cancer cell plus different vaccine adjuvants were assessed by in vivo liver tumor model and in vitro mixed lymphocyte reaction studies. The elicited activated T cells were determined with immunohistochemistry and T cell induced cytotoxicity studies. ResultsTreatment of established H22 tumor with in vitro NAP and UVA treated cancer cell vaccine led to significantly improved survival. Further mixed lymphocyte reaction study implied that adjuvants alum and CpG would improve the therapeutic potential whereas poly IC would not be as effective. Subsequent in vivo validation of alum and CpG adjuvants indicated that only CpG in NAP and UVA treated cell vaccine resulted in markedly enhanced survival (median at 71 days and 50% tumor-free) as compared with PBS group (14.5 days, 0%) and CpG alone (36 days, 0%). It was revealed that the enhanced efficacy by CpG was specific to NAP and UVA treated cells. Moreover, the effective tumor immunotherapy was achieved through the infiltration of active CD4 and CD8 T cells in tumors and acquisition of cancer cell-specific cytotoxic CD8 T cells. ConclusionIn vitro NAP and UVA treated cancer cells plus CpG adjuvant are effective tumor therapeutic vaccines per se.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call