The present study aimed to evaluate adipose tissue blood flow (ATBF) by means of laser-Doppler flowmetry (LDF) in humans. Lower body negative pressure (LBNP) and straining known to affect epidermal blood flow through the autonomic nervous system were performed in 11 lean and 11 obese female volunteers. ATBF changes were compared between both groups and also discriminated from skin blood flow (SBF) responses of the immediate vicinity. Additionally, LDF measurements were compared with flow measurements using (133)xenon washout in 10 lean subjects during whole body cooling. LDF estimations of SBF and ATBF showed a positive correlation to (133)Xe during cooling. SBF and ATBF were reduced to the same extent in both lean and obese subjects during LBNP. Straining induced divergent changes in SBF and ATBF: initially SBF decreased while ATBF increased, but toward the end of straining SBF increased above baseline and ATBF returned down to baseline level. Those changes were similar in both weight groups. Interestingly, only in obese subjects, both LBNP and straining were followed by ATBF augmentation, while SBF levels remained stable. In conclusion, LDF compares with (133)Xe washout in monitoring ATBF during tonic perfusion changes. Its strength, however, lies in the detection of rapid flow alterations within the subcutaneous tissue, allowing the evaluation of reflex responses of the subcutaneous microcirculation. Interestingly, those rapid changes in SBF and ATBF can be both concordant and discordant. With regard to ATBF, vasoconstrictor components of the reflex responses were similar in lean and obese subjects, whereas vasodilatory responses were more pronounced in obese volunteers.